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A model is constructed for perturbations created in the surrounding laminar flow by 
a turbulent spot in plane Poiseuille flow. The turbulent spot is represented as a 
distribution of increased Reynolds stress, which travels steadily through the 
surrounding laminar flow. The Navier-Stokes equations are linearized and are solved 
by using Fourier transforms in the plane parallel to the channel walls and a finite- 
difference method in the direction perpendicular to the walls. The travelling 
Reynolds stress distribution acts as a forcing term in the equations. 

Numerical results show that a packet of oblique waves are generated around the 
disturbance when the force is antisymmetric with respect to the channel centreline, 
whereas no identifiable wave crests are found when the forcing is symmetric. 
Furthermore, wavelengths of the typical waves composing the packet are insensitive 
to the size of the region of Reynolds stress. The dependencies of the flow field on 
Reynolds number and spot speed are investigated. In  the case of symmetric forcing, 
the flow is forced around the disturbance, causing distortions to the basic velocity 
profiles. These results are in qualitative agreement with experimental observations. 

1. Introduction 
The laminar-turbulent transition process in a shear flow has been one of the most 

studied fluid dynamic phenomena since its discovery by Osborne Reynolds (1883) 
over a century ago. The fact that there are many routes by which a flow may undergo 
transition makes the investigation of the transition process especially difficult and 
challenging. Linear stability theory is successful in explaining the onset of transition 
for some flow situations (e.g. boundary-layer flow), but is unsatisfactory for others 
(e.g. plane Poiseuille flow). 

Linear waves first become unstable when the Reynolds number exceeds a critical 
value. An accurate value for the critical Reynolds number for linear disturbances in 
plane Poiseuille flow was foundby Orszag (1971) to be 5772. The experiment of 
Nishioka, Iida & Ichikawa (1975) showed that under very carefully controlled 
conditions, linear waves become unstable a t  a Reynolds number of about 6000. 
Stuart (1960) showed that waves become unstable when their amplitudes exceed a 
threshold at Reynolds numbers greater than about 2800. However, transition to 
turbulence in plane Poiseuille flow has been observed to occur much earlier than 
predicted by either linear or nonlinear theory. In fact, a turbulent spot in plane 
Poiseuille flow can be generated and grow at Re = 1000 as was shown by the 
experiment of Carlson, Widnall & Peeters (1982). Orszag & Kells (1978) numerically 
solved the Navier-Stokes equations and found that three-dimensional finite- 
amplitude disturbances are destabilizing and can drive transition to turbulence a t  a 
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Reynolds number of about 1000. Orszag & Patera (1980, 1981, 1983) analysed 
subcritical transition to turbulence and showed that two-dimensional finite- 
amplitude waves were exponentially unstable to  three-dimensional linear secondary 
waves. 

In  addition to the investigations focused on the secondary instability of two- 
dimensional waves, research on the response of a shear flow to localized disturbances 
has also been done. 

Gaster & Grant ( 1975) experimentally investigated the formation and development 
of a wave packet in a laminar boundary layer created by a pulsed disturbance at  a 
point on the boundary. Their experimental results were compared with the 
theoretical model of Gaster (1975) and good agreement was found. The wave packet 
resulting from a pulsed disturbance was modelled as a superposition of solutions to 
the Orr-Sommerfeld equation. 

Carlson et al. (1982) presented a flow visualization study of the growth of turbulent 
spots in plane Poiseuille flow using a water channel of width-to-depth ratio of 133 
and observed that both natural and artificially triggered turbulent spots could grow 
at Reynolds number as low as 1000. They obtained photographs of the turbulent 
spots showing oblique waves in the laminar flow surrounding the spot. 

From the results of Gaster (1975) discussed above, one concludes that linear theory 
will predict that  a disturbance in a shear flow will grow only a t  supercritical 
Reynolds numbers as given by linear theory so that such a calculation would offer 
little insight to the observed growth of turbulent spots in plane Poiseuille flow. 

I n  exploring the findings of Carlson et al. (1982), Widnall (1984) raised the 
following questions. First, how is the turbulent spot able to grow in a stable viscous 
background where all linear and weakly nonlinear free waves decay ? Second, how 
and why are the waves generated ? Is there a preferred wavelength ? Finally, what 
role do the waves play in the growth of the localized turbulence ? Widnall proposed 
that the turbulent spot acts as a region of disturbance which generates waves in a 
manner similar to that of a ship moving on a free surface and forces the oblique waves 
to amplitudes such that they become unstable to three-dimensional secondary 
disturbances along their crests. These instabilities break down further into small- 
scale turbulence which increases the size of the region of disturbance and the cyclical 
process continues. A mathematical model was constructed which modelled the region 
of disturbance as a steady travelling delta-function, leading to a non-homogeneous 
Orr-Sommerfeld equation. Unlike the solution of a pulsed disturbance in a subcritical 
shear flow, which would decay downstream, a solution forced by a travelling 
disturbance will retain its form. A far-field solution was obtained using the method 
of stationary phase which showed qualitative agreement with the experiment of 
Carlson et al. (1982). I n  this paper we extend this approach to obtain a complete 
linear flow-field solution for such a forced disturbance. 

Henningson & Alfredsson (1987) experimentally investigated the wave packets 
generated by the turbulent spot in plane Poiseuille flow by hot-film anemometry. 
They found that the steamwise velocity disturbance associated with the waves was 
antisymmetric with respect to the channel centreline, and showed that the wave 
packet consisted of the locally, least-stable Tollmien-Schlichting mode. A symmetric 
disturbance in the spanwise velocity was found directed towards the spot 
downstream of the spot, and away from the spot upstream, indicating a blockage 
effect, consistent with the idea of Widnall (1984). They also did a linear stability 
analysis of the modified velocity profiles measured in the experiment and found, by 
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considering the eigenvalues of the Orr-Sommerfeld equation, that the modified flow 
field was less stable than the undisturbed flow, although the amplification rates they 
computed are too small to explain the observed growth of the waves. 

A flow visualization experiment of turbulent spots in plane Poiseuille flow was also 
done by Alavyoon, Henningson & Alfredsson (1986), and recently a full Navier- 
Stokes simulation was carried out by Henningson, Sparlart & Kim (1987). These 
experiments and calculations were in good agreement and determined the speed of 
advection, spreading half-angle of the spot and some properties of the wave field 
around the spot. 

Although it is clear that the propagation and growth of a turbulent spot in plane 
Poiseuille flow is inherently a nonlinear process, it is of some interest to determine 
whether some properties of the observed wave field can be related to the linear wave 
field generated in the laminar shear flow by a steady travelling disturbance. In this 
analysis, the small-scale turbulence in the spot is modelled as a region of increased 
Reynolds stress. Both symmetric and antisymmetric disturbances are considered. 
The focua of the investigation is the structure of the wave field and the effects of 
changing the flow parameters on the wave pattern. The numerical results show that 
the present formulation is of some value in describing certain features of the wave 
field generated by a concentrated disturbance. This investigation does not provide a 
complete analysis of the turbulent spot since subsequent secondary instabilities of 
the wave field and modifications to the mean velocity profile require a nonlinear 
analysis. 

2. Formulation 
We begin with the full incompressible unsteady Navier-Stokes equations and 

choose a coordinate system such that the x-axis is parallel to and in the direction of 
the unperturbed flow, the y-axis is parallel to the walls and perpendicular to the 
direction of the unperturbed flow, and the z-axis is perpendicular to the walls. The 
frame of reference is fixed to the turbulent spot, which travels with velocity, c,. 

av - 1  
- - + v - v v  = - v p + v v 2 v ,  
at P 

v - v  = 0, (2) 

where v is the velocity vector, p is the pressure, p is the fluid density, v is the 
kinematic viscosity. We non-dimensionalize the lengthscales by the channel half- 
depth h,  the velocities by the maximum mean velocity in the channel U,, pressure by 
the term pvZ, and time by h/U,,B, where B is a chosen non-dimensional quantity (to 
be defined later in this section) so that the non-dimensionalized derivative, avlat, is 
of order 1. The non-dimensional equations are 

a u  1 
o - + v * v v  = - V p + - V v ,  Re 

at (3) 

v . v  = 0, (4) 

where Re = U, hlv  is the Reynolds number, and all variables are understood as non- 
dimensional. 

In the presence of a turbulent spot the flow field is perturbed from that of the 
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parallel laminar flow. We define the large-scale deviations of velocity vector, u", and 
pressure, 9, as follows: 

e = P i 7 ( $ ,  (5) 

@ = p - P ,  (6) 
- 

where the overbar indicates ensemble average, U(z)  and P are the velocity and 
pressure of the unperturbed laminar flow respectively and i is the unit vector in the 
x-direction. Hence, we can split the velocity vector and the pressure each into three 
components and derive the governing equation in the same manner as did Landahl 
(1975) in his two-scale model for wave breakdown and turbulence, 

u = U(z)i+E+v' ,  (7) 

p = P+@+p', (8) 
where u' and p' are turbulent fluctuations of velocity and pressure in the perturbed 
flow field whose ensemble averages are zero. 

We now substitute (7) and (8) into (3) and (4), take the ensemble average and 
substract the equation of the unperturbed laminar flow 

1 d 2 U  dP 
Re dz2 dx 
-- = - 

to obtain the following equations 

(9) 

where the tildes have been dropped on the understanding that u, v, w (the x, y and 
z components of E) and p are large-scale perturbations defined by (5) and (6). The 
overbar indicates an ensemble average. 

The turbulent spot grows linearly as it travels downstream and the rate of growth 
is proportional to the spreading half-angle. Hence, the timescale of growth is 
inversely proportional to the spreading half-angle. Now we define the non- 
dimensional quantity 0 in (3) and subsequent equations to be the spreading half- 
angle. Carlson et al. (1982) estimated that B is about 0.14 radians (8'). We shall 
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therefore assume that in the frame of reference moving with the spot, the flow may 
be considered as quasi-steady and the time derivatives are dropped. 

We argue that the variations of the Reynolds stresses are much more rapid in the 
z-direction than in the other directions, therefore the dominating Reynolds stress 
terms are au.w'/az and aw'2/az. If we assume that the flow field within the turbulent 
patch is close to that of the fully developed turbulence in a channel, then the latter 
term is zero or very small since there is no mean spanwise shear gradient. 

Our main interest is in the laminar flow surrounding the turbulent patch. Since 
large-scale perturbations decay away from the spot, linearization is justified there. 
Using these assumptions we can, after some algebraic manipulations, simplify the 
equations to the following form : 

au av aw 
ax ay a Z  
-+-+- = 0, (23) 

where the operator V4 = V2(V2). Equation (20) is the fundamental equation in the 
present analysis : a linear non-homogeneous equation with the Reynolds stress term 
considered as a forcing function. These equations are solved numerically by a 
combination of Fourier- transform and finite-difference methods with the boundary 
conditions and the form for the forcing terms discussed below. 

The non-slip condition at the walls ( x  = f 1) gives 

u(x ,  y+ 1) = v(x ,  yf 1 )  = w(z, y, f 1) = 0. (24) 

Two more boundary conditions are needed for (20). From (23), since au/ax = av/ay 
= 0 a t  the walls, we obtain 

From (12) we obtain the boundary conditions for the pressure p: 

since all the x- and Y-derivatives vanish at the walls and arzz/az has been assumed 
negligible. 

The boundary conditions in the x- and y-directions are that the perturbation 
quantities should be zero at a distance infinitely far from the disturbance. 

Finally, we must assume a form for the function u'w' in order to complete the 
closure of the problem. Since we are interested only in the solution outside the 
turbulent region, we assume that the Reynolds stress is a localized disturbance of 
Gaussian form : 

GW= -j(x)exp( 1 -?), 
€2 
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where f(z) is the z-direction distribution of ufwr,  and E is proportional to  the standard 
deviation of the Gaussian disturbance. As E tends to zero, this function approaches 
the delta-function. To model finite size of the spot, we distribute this function in an 
area representing the turbulent spot : 

where S is the area taken by the disturbance in the (x, y)-plane. 
For the distribution of the concentrated disturbance in the z-direction, we assume 

a form that allows us to study a general distribution composed of asymmetric and 
an antisymmetric part : 

where c1 and c2 are constants to allow for asymmetry with respect to z in the input 
disturbance. Since we are interested in scales of motion larger than the distance 
between the channel walls, the solution should not be too sensitive to the actual 
distribution of the forcing across the channel (other than its symmetry). The f o r -  
term enters the problem as the z-derivative of the Reynolds stress u'w'. 
Differentiating f ( z )  with respect to z ,  we have 

(29) f(z) = cl(z-z3)+c.2c0s(~?Tz), 

f ( z )  = el ( 1 - 32)  - c2in sin (im) (30) 
where the first and the second terms on the right-hand side give rise to symmetric 
and antisymmetric forcing respectively. It should be noted that when the forcing is 
antisymmetric, u and w are antisymmetric and symmetric respectively, and vice 
versa. The particular choice of the form f(z) is mainly based on simplicity, and in fact, 
numerical calculations of the structure of the surrounding laminar flow show that, 
aside from issues of symmetry, different choices off(z) do not alter the predicted 
properties. 

3. Numerical methods 

method in z to obtain the flow-field solution for a travelling disturbance. 
We use Fourier-transform techniques in x and y combined with a finite-difference 

Taking the Fourier transform of u, v, w, p and with respect to x and y, 

- 
where q represents any of the variables u, v, w, p and u'w', is the Fourier spectrum 
of q, i = 1/ - 1,  and a and P are wavenumbers in the x- and y-directions respectively, 

, d U  d m  
zi-iaU6 = ia++w-+---- 

dz dz ' (34) 

. A dzi, $4 =-mu--, 
dz (35) 
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where (32), the transform of (20), is a non-homogeneous Orr-Sommerfeld equation. 
The symbol is used to  denote the spatial transform of the input disturbance. 

The transform of a single Gaussian disturbance is 
- 
u’w’ = nf(z) exp [ae2(a2 +/I2)] (36) 

and the transform of Gaussian disturbances distributed with equal strengths over a 
finite arbitrary area, S ,  is 

A 

= zf(z)exp[:e2(a2+pl)]SS exp[-i(af+Pv)]df[dy. 
S 

(37) 

In  order to evaluate the integral in (37) a finite number of points are chosen on the 
boundary of S and adjacent points are joined by straight lines. The area S is thus 
approximated by a polygon. If this polygon is symmetric about x = 0, the integral 
in (37) can be easily evaluated. 

The boundary conditions at  the walls presented in the last section become 

. ; ( a ,p ,+ l )=v ” (a ,p ,+ l )= ,& (a ,p ,~1 )=0 ,  (38) 

d,& 
dz 
_ -  - 0, (39) 

There are certain symmetry properties which we state below without proof: 
Conjugate symmetry in a for the same p and z for d,  8 and $: 

.;(a) = .;*(-a), ,&(a) = ,&*(--a), $(a) = $*(--a), 

where a starred quantity represents its complex conjugate. 
Symmetry in p for the same a and z for 6, 8 and $: 

.;(PI = .;(-P), 4 P )  = &(-P) ,  $(P)  = Zirc-p,. 

B(p) = -v”( -p).  

v”(a) = -v”*( -a). 

Antisymmetry in p for the same a and z for B :  

Conjugate antisymmetry in a for the same p and z for v”: 

With these symmetry properties we only need to calculate a quarter of the Fourier 
spectrum (a, p, 0) to obtain the flow-field solution. 

To solve (32), the non-homogeneous Orr-Sommerfeld equation, we apply a higher- 
order finite-difference scheme based on that devised by Thomas (1953) with 100 
spatial steps in the z-direction. The highest derivatives in (33) and (34) are both of 
second order, which makes possible the direct use of fourth-order central differences 
to approximate these differential equations. 

We obtained 6 from (35) once 2 and Zir are available, except for p = 0. However, 
we know that B = 0 when /3 = 0 since B is an odd function of /? (the antisymmetry 
property for 6). 

Using the fast-Fourier-transform technique for the inverse transform, we sampled 
the Fourier spectrum at discrete points in the (a, p) - plane using 128 Fourier modes 
in both x- and y-directions. 
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4. Numerical results and discussions 

velocity profile is 

where c, is the speed of the concentrated disturbance relative to the laboratory 
frame. 

A general asymmetric distribution of Reynolds stress about the channel centreline 
can be expressed as the sum of its symmetric and an antisymmetric parts. In  the 
present linear formulation we solve the symmetric and antisymmetric problems 
separately and the full solution can be obtained by superposition. 

Since the frame of reference is fixed to the concentrated disturbance, the basic 

U(z )  = 1 - 2 2 - c , ,  

4.1. Eflect of changing the speed of the disturbance with antisymmetric forcing 

We use a single Gaussian disturbance and fix c1 = 0 and c2 = 0.02 so that we have an 
antisymmetric forcing. A series of calculations are carrried out for 0.1 < c, < 0.7 with 
the Reynolds number fixed a t  1000. Figure 1 shows the w-velocity contours for 
various values of c,. The same contour values are used in each plot of figure 1 ,  which 
range from -0.005 to 0.005. We select, rather arbitrarily, one layer in the channel, 
i.e. z = -0.4, to present our results. The amplitude of the perturbation in the vertical 
velocity w is largest a t  the centre of the channel ( z  = 0) and vanishes at  the walls 
( z  = _+ l ) ,  therefore other choices of z (not too close to the walls) do not alter the basic 
patterns of the perturbation, but change its amplitude somewhat. In  figure 1 and all 
subsequent figures involving contour plots, the basic flow a t  z = 0 is from left to 
right. For c, = 0.1, the perturbation to the basic flow is confined to a region close to 
the origin where the concentrated forcing is located. No apparent wave crests are 
seen in this case (figure l a ) .  For c, = 0.2, wave crests begin to appear in the contour 
plots, but extend only a short distance into the surrounding flow (figure l b ) .  For 
c, = 0.25, wave crests are clearly identifiable and extend farther into the flow (figure 
l c ) .  As the value of c, is increased further, more wave crests are seen, their typical 
wavelengths become shorter. The spread of these wave crests into the surrounding 
flow reaches a maximum spatial extent a t  c, = 0.4 approximately, becoming smaller 
on further increase of c,. The typical wavelengths become shorter and the angles of 
the wave crests increase. At c, = 0.7, the perturbation to the basic flow shrinks to the 
vicinity of the concentrated forcing (figure l d ,  e ,  f). 

These results are related to the Orr-Sommerfeld eigenvalue problem. Figure 2 (a,  
b )  shows the temporal eigenvalues of Poiseuille flow at Re = 1000. The real part, c,, 
and imaginary part, ci, of the eigenvalue, c ,  are plotted against the absolute 
wavenumber, k = (a2+P2)f, for various fixed P. The least stable mode occurs a t  
approximately k = 1.35 and c, = 0.4. Since the spot speed c, is real we do not have 
an exact resonance with the free Tollmien-Schlichting waves which have no real 
eigenvalue c at Re = 1000. However, the least stable Tollmien-Schlichting mode has 
a small imaginary part, ci ( - 0.03 in this case) ; near-resonance is expected when 
c, = c,. This explains why the most effective spreading of the wave crests occurs 
when the speed of the concentrated disturbance c, is 0.4. 

It is important to note several facts concerning experimental observations. In  the 
flow visualization study of Carlson et al. (1982), the front and the rear of the 
turbulent spot travel with speeds of approximately 0.67 and 0.33 respectively. The 
phase speed of the wave crests in this experiment was estimated by Widnall (1984) 
to be approximately 0.4 a t  Re = 1000. This agrees very well with our calculations in 
that the phase speed is very close to that of the least stable Tollmien-Schlichting 
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FIGURE 1 (a-c). For caption see next page. 
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FIGURE 2. Temporal eigenvalues, c ( a ,  p )  = c,(a, /3) + ici(a, /3), of plane Poiseuille flow at Re = 1000. 
(a)  c, vs. k for various /3. (b) ci 11s. k for various /3, where k = ( a 2 + ~ z ) ~ .  

mode. However, the flow visualization experiment of Alavyoon et al. (1986) showed 
that ‘no turbulent spots could be generated no matter how large the (initial 
injecting-jet) disturbance was’ for Re < 1100. The front and the rear of their spot 
travel a t  higher speeds (x 0.75 and 0.62 respectively) than those measured by 
Carlson et al. (1982). The full Navier-Stokes simulation of Henningson et al. (1987) 
performed a t  Re = 1500 seems to confirm the observations of Alavyoon et al. (1986). 
In  both Alavyoon et al. (1986) and Henningson et al. (1987) the spots shown were 
well-developed ones at distances of over 100 channel half-depths downstream of the 
triggering position, whereas, Carlson et al. (1982) showed photographs of spots in the 
early stages of development, i.e. a t  distances of about 50 channel half-depths 
downstream of the trigger, showing wave patterns quite different from those in figure 
3 of Henningson et al. (1987), but more like the results shown in figure 1 of the present 
paper. It may be that the early stages of the spot development is different from that 
in the later stages. Further experiments and simulations have to be done before these 
questions can be answered. Our model may provide information about the early 
stages of the spot development where the wave field around the spot resembles that 
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FIGURE 3. Contour plots of the velocity component w, c, = 0.4 and z = -0.4 with c1 = 0, c2 = 0.02. 
(a )  Re = 500, ( b )  1500. (See figure 1 d for Re = 1000). Contours have the same values as in figure I .  

of Carlson et al. (1982). In  any case, we do not expect a linear calculation to give a 
complete model for the development of the turbulent spot. 

4.2. Eflect of Reynolds number with antisymmetric forcing 
Here, we are interested in the effect of changing the Reynolds number on the wave 
field generated by the concentrated disturbance of the form (27) with antisymmetric 
forcing. We assume that the disturbance is travelling with speed c, = 0.4 in the 
laboratory frame. We repeated the calculations at three different Reynolds numbers, 
Re = 500, 1000 and 5000. 

Figure 3 shows the contour plot of the w-velocity for one layer in the channel, 
z = - 0.4. We can see wave crests becoming more and more oblique as they extend into 
the surroundings. At Re = 500, the wave crests are heavily damped spatially. As the 
Reynolds number is increased the wave crests radiate out into the surroundings 
whereas the wavelengths and the oblique angles hardly change a t  corresponding 
positions in the flow. In the flow visualization study of Alavyoon et al. (1986) and 
experiment of Henningson & Alfresson (1987) the spreading half-angle of the 
turbulent spot was found to increase with the Reynolds number. The results of our 
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FIGURE 4. Contour plot of w for Re = 1000, c, = 0.4 and z = -0.4 with disturbances distributed in 
a circle of diameter 10 centred at ( 0 , O ) .  c1 = 0, cz = 0.02. Contours plotted have the same values as 
in figure 1. 

calculations are consistent with their experiments. The wavelength of a typical wave 
around the concentrated disturbance was measured from figure 3 to be approximately 
5.0, and showed no appreciable change over the Reynolds number range 500 to 1500. 
In their experiment, Henningson & Alfredsson (1987) found that the dominant 
wavelength was 4.6 at Re = 1500. (We also calculated flow patterns for various 
values of c, at  Re = 1500. The greatest extent of flow disturbance occurred at about 
c, = 0.4. Only these results are presented.) 

4.3. Effect of the scale of the concentrated disturbance with antisymmetric forcing 
In ss4.1 and 4.2 we presented results for a disturbance of very small spatial extent. 
The available experimental results, e.g. Carlson et al. (1982), show that the typical 
scale of a turbulent spot is about 10 to 20 times the channel half-depth. It is natural 
to ask whether the properties of the wave crests generated by the region of 
turbulence depend on the scale of this region. We model the spatial scale of the 
turbulent spot by distributing the Gaussian disturbance over a finite area, S (see 
(37)). 

Equation (37) can be integrated analytically if the region S is approximated by 
an n-sided polygon symmetric about the x-axis and with thej th  side described by 
7 = k jc+r i ,  where (5,~) is a point on thejth side and ki and ri are, respectively, the 
slope and the intersection point with the y-axis if the j th  side were extended. We 
have 

e-i((a-kj8) & - P r j )  - e-i((a-kj8)Ej-Prj) ,-i((a+kjP) 5j+l+Prj) - e-U(afkj8) Ej+Prj) 
- 

(a-k#)P (a + k jP)  P = x[ 
i 

where the Ej are the streamwise coordinates of the corners of the polygon. The above 
expression is continuous in a and p everywhere, since the integrand is continuous. A t  
a/,!? = f k, and p = 0, the values of the terms in the summation are defined by their 
limits as alp+* k, and p + O .  
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FIGURE 5. Contour plot of w. Re = 1000, c, = 0.4, z = -0.4, c1 = 0.1 and c2 = 0. Contours plotted 
have the same values as in figure 1 .  

We take the region S to be a circle of diameter 10 and approximate it by a 16-sided 
polygon. Contours of constant w for the flow field due to this extended disturbance 
are shown in figure 4. The typical wavelength of the disturbance measured from 
figure 4 is approximately 5.0 for Re = 1000, unchanged from the value for a single 
Gaussian disturbance (figure 1). Calculations were also carried out for different 
parameters c, and Re; the typical wavelength in each case is the same as that 
obtained in the single-disturbance case a t  corresponding c, and Re. The wavelength 
appears to be insensitive to the spatial extent of the disturbance. Therefore, the 
results of calculations using a single Gaussian disturbance are sufficient to represent 
the essential features of the wave field around a large disturbance. 

4.4. Numericul results with symmetric forcing 

We use a single Gaussian disturbance symmetric with respect to the channel 
centreline and take c1 = 0.1, c2 = 0, cs = 0.4 and Re = 1000. The contour plot of the 
vertical velocity w is shown in figure 5 ( z  = -0.4). The perturbation to the basic flow 
is confined to the vicinity of x =  0 with an arrow-shaped region leading the 
concentrated disturbance. We do not observe any identifiable wave crests such as 
those we see in figure 1 associated with antisymmetric forcing. Calculations with 
different parameter values Re and c, show similar patterns of perturbation. As c, 
increases the ‘ arrow head ’ leading the concentrated disturbance becomes in- 
creasingly shorter and an ‘arrow tail’ of similar shape begins to trail the disturbance. 
A t  about c,  = 0.8 the ‘head’ disappears almost completely leaving only the long 
‘tail ’ trailing the disturbance. 

Figure i 2  of Henningson & Alfredsson (1987) shows the measured spanwise 
velocity profiles in the region where the waves are seen. In front of the spot the flow 
direction is towards the spot centreline. When about half of the spot (or what they 
termed the ‘wingtip’) has passed, the flow close to the wall remains towards the 
centreline whereas the flow near the centre of the channel is away from the centreline. 
Their profiles were measured a t  different instants in time a t  a fixed station in space 
as the spot travelled. 

Since their experimental results discussed above show spanwise velocity profiles 
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FIGURE 6. Spanwise velocity profiles a t  different streamwise stations a t  a fixed spanwise position. 
The centre of the spot is a t  x = 0 and y = 0. Re = 1500. 

around the spot, we present our numerical results in figure 6 for the spanwise velocity 
profile over half of the channel a t  some selected streamwise stations for a fixed 
spanwise station on one side of the disturbance. The spanwise velocity close to the 
wall is towards the spot centreline, and is away from the centreline far from the wall, 
indicating the presence of streamwise vorticity. This is a result of the pressure 
gradient associated with the curvature of streamlines around the disturbance. Figure 
6 shows similarities to figure 12 of Henningson & Alfredsson (1987). Here, we do not 
attempt to  compare our linear calculations with the experiment quantitatively since 
the process by which the velocity profile is distorted is a highly nonlinear one. Figure 
6 merely shows the tendency of a symmetric disturbance to create an inflectional 
velocity profile, and hence change the stability properties of the basic flow. 

In the experiment of Henningson & Alfredsson (1987) the u-perturbation field 
around the turbulent spot was found to consist of waves antisymmetric (in u) with 
respect to the channel centreline and, earlier, the experiment of Nishioka et al. (1975) 
also showed that the two-dimensional linear waves in plane Poiseuille flow are 
antisymmetric (in u). According to linear theory the least-damped waves are 
antisymmetric, and the symmetric waves are strongly damped. It is, therefore, not 
surprising that we do not see identifiable wave crests with symmetric forcing in the 
present simple linear model. The moving disturbance merely distorts the basic 
velocity profile, modifying the basic flow and its stability properties. Nonlinear 
analysis is required to study the change of the wave field due to the change in basic 
flow. 

4.5. Perturbation amplitude and forcing strength 

In  our formulation the velocity perturbations are proportional to  thc strength of thc 
Reynolds-stress forcing terms. The strengths of the concentrated disturbances c1 and 
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c2 (see (30)) represent the magnitude of the Reynolds stress integrated over the area 
on which it acts. The ratio of the linear perturbation amplitudes to forcing strength 
is a measure of the effectiveness of the concentrated disturbance. 

We can use estimates of the strength of the forcing to determine the magnitude of 
the velocity perturbations for comparison with the experimental data of Henningson 
& Alfredsson (1987). For Re = 1500, in the plane z = 0.6 a t  a spanwise distance of 
four times the channel half-depth (conditions chosen for comparison with 
experimental data) we found that the maximum amplitude of the u-velocity ratio 
to the strength of the forcing was u / c ,  % 1 and u/c, w 4 for symmetric and 
antisymmetric disturbances respectively. Since experimental data are unavailable 
for Re = 1500 we use the data of Eckleman (1974) at Re = 2800 to estimate the 
magnitude of the Reynolds stress. From these data we deduced that the maximum 
value of au‘w‘laz is approximately 0.022. From experiments we estimate the area of 
a turbulent region to be about 20 times the square of the channel half-depth. Thus 
the strength of the forcing over the spot area is 0.44. Our model for the region of 
turbulence is a Gaussian function with an integrated area of x .  If we relate our model 
to the experimental data a t  the same maximum value of au’w’/az, we obtain an 
estimate for c1 of about 0.09 from (27) and (30). This strength of symmetric forcing 
would produce a symmetric u-velocity perturbation of about 10 YO. 

On the other hand, we could use the measured amplitudes of the antisymmetric 
disturbance (Henningson & Alfredsson) to estimate the magnitude of antisymmetric 
forcing. This would give a value for c,  of about 0.01. We can then ask what ratio of 
symmetric to antisymmetric forcing would be required to produce the observed wave 
amplitude of about 0.04. Our model predicts that an asymmetry in Reynolds stress 
of about 10% is required to produce the observed wave amplitude. 

Thus the predictions of the linear model are in reasonable agreement with the 
observed perturbation velocities for symmetric disturbances for which a direct 
estimate can be made. The estimate of asymmetric disturbances can only be inferred 
since the asymmetry of the quasi-steady Reynolds stress forcing is not known. 
However, the flow is found to be particularly sensitive to antisymmetric forcing. 

5. Conclusion 
Using linear theory to present flow patterns created by a steady travelling 

concentrated disturbance of Reynolds stress in plane Poiseuille flow, provides some 
insight into the observed structure around a turbulent spot. The region of small-scale 
turbulence was modelled by a concentrated distribution of Reynolds stress or a 
distribution of such disturbances over a finite area when the effect of finite spatial 
extent was considered. In general this forcing term can be regarded as the sum of a 
symmetric function and an antisymmetric function. The following conclusions can be 
drawn from numerical calculations using this model. 

Antisymmetric forcing produces a spatially damped wave packet around the 
disturbance a t  Reynolds numbers below the critical value of linear theory. These 
waves become less damped spatially as the Reynolds number increases ; this may be 
related in some way to the increase with Reynolds number of spreading half-angle of 
the spot observed in some experiments. The typical wavelength measured from the 
contour plots of the cross-channel velocities is approximately 5.0 for Reynolds 
numbers from 500 to 2000 and for a disturbance travelling with speed c,  = 0.4; 
this wavelength is close to that observed by Henningson & Alfredsson (1987) 
(approximately 4.6 at  Re = 1500). The typical wavelength is insensitive to the scale 
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of the region of disturbance that creates the waves. The shape of the wave packet and 
wave sweep-back angles in the contour plots of the calculated cross-channel velocity 
are in qualitative agreement with those in photographs taken by Carlson et al. (1982). 
Increasing the speed c, of the disturbance from 0.1 to 0.7 produces, a t  first, a less 
spatially damped wave field with decreasing wavelength. Spatial damping reaches a 
minimum at about c, = 0.4. As c, is increased further, the extension of the wave 
crests into the surrounding flow becomes less effective and the disturbance is confined 
to the immediate vicinity of the steady forcing disturbance. Only small asymmetry 
in Reynolds stress is  required to create the observed wave amplitudes. 

Symmetric forcing does not produce an identifiable wave field, but is found to 
distort the basic velocity profile - the blockage effect. The picture we present is not 
inconsistent with, but rather complementary to, the work of Henningson & 
Alfredsson (1987) and Henningson et al. (1987). In their work they pointed out that 
the symmetric blockage effects modify the velocity profile to slightly destabilize the 
antisymmetric waves. In our work we show that antisymmetric forcing generates 
antisymmetric waves while blockage modifies the velocity profile. In  a fully 
nonlinear formulation of the problem both these mechanisms would contribute to the 
observed wave field. The nonlinear interactions between the symmetric and 
antisymmetric modes required for a complete description of the flow field are beyond 
the scope of the present linear analysis, and are left to future studies. 

This research was supported by National Science Foundation under Grant MSM- 
821 1478. 
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